ANALISIS SPASIAL PERSEBARAN REKLAME
Abstract
Regional autonomy is the surrender of authority from the center to the regions to regulate and manage the interests of the local community according to their own initiatives based on the aspirations of the people, as stated in Law No. 32 of 2004 concerning Regional Government. With the existence of regional autonomy, the regional government is expected to be better to explore the potential of local revenue sources in financing all regional development activities through increasing Original Local Government Revenue (OLGR). One component of OLGL that has a contribution in Pekalongan Regency is Regional Tax. Regional tax, one of which is advertisement tax, is one component of the OLGL that contributes to regional development. Clustering algorithm, one of which is k-means clustering can be applied to advertisement tax data so that it can be known that ad grouping is based on distance from the market, distance to traffic light and vehicle volume. From each of these groupings can also be seen each of the characteristics so that it is known which groups have the largest amount of tax and the number of tax donations. From this research, a web-based system has been successfully developed that is able to process the spatial analysis of the distribution of billboards with the clustering method in Pekalongan Regency. From the results of clustering analysis, it can be seen that the Subdistrict passed by the coastline has a correlation with the high amount of advertisement tax in Pekalongan Regency, this can be seen in the results of clustering using the k-means algorithm, where advertisements are in clusters that have average quantities the highest taxes are all in the sub-district that is crossed by north coast way. The closeness to the market and traffic light has a correlation with the high amount of billboard bill advertising tax in Pekalongan Regency, wherein the clusters that have the highest volume of vehicles the average size of the billboard tax is high.
References
Republik Indonesia. 2004. Undang-Undang Republik Indonesia Nomor 32 Tahun 2004. Lembaran Negara RI Tahun 2004, No. 125. Sekretariat Negara. Jakarta.
Kabupaten Pekalongan. Peraturan Kabupaten Pekalongan Nomor 10 Tahun 2010 tentang Pajak Daerah. Lembaran Daerah Kabupaten Pekalongan Tahun 2012 Nomor 6 Tambahan Lembaran Daerah Kabupaten Pekalongan Nomor 27
Kabupaten Pekalongan Dalam Angka. 2017. Badan Pusat Statistik Kabupaten Pekalongan
Peraturan Bupati Pekalongan Nomor 50 Tahun 2015 Tentang Penyelenggaraan Reklame. Kajen 31 Desember 2015
Ruliansyah, Andri (dkk). 2017. Analisis Sebaran Demam Berdarah Dengue di Kota Tasikmalaya Tahun 2011-2015. Aspirator, 9(2), pp. 85–90
Widyaningrum, Dyah, Sudarsono, Bambang, dan Nugraha, Arief Laila . 2017. Analisis Sebaran Reklame Billboard Terhadap Lokasi dan Nilai Pajak Reklame Berbasis SistemInformasi Geografis. Jurnal Geodesi Undip, Volume 6, No.1
Ruswanto, Bambang. 2010. Analisis Spasial Sebaran Kasus Tuberkulosis Paru Ditinjau Dari Faktor Lingkungan Dalam Dan Luar Rumah di Kabupaten Pekalongan. Tesis. Pascasarjana Universitas Diponegoro Semarang
Nasari, F., Darma, S., & Informasi, S. (2015). Penerapan K-meansClustring Pada Data Penerimaan Mahasiswa Baru, 6–8.
Metisen, Benri Melpa dan Herlina Latipa Sari.2015. Analisis ClusteringMenggunakan Metode K-meansDalam Pengelompokkan Penjualan Produk Pada Swalayan Fadhila. Jurnal Scientific Pinisi, Volume 2, Nomor 2, hlm. 92-96
Rosmini, Fadlil Abdul dan Sunardi.2018.Implementasi Metode K-Meansdalam Pemetaan Kelompok Mahasiswa Melalui Data Aktivitas Kuliah. IT Journal Research and Development Vol.3, No.1. e-ISSN:2528-4053.
Hadi, Alfian Futuhul, Sa’diyah Halimatus, dan Sumertajaya I Made. 2007. Penanganan Ketaknormalan Data Pada Model AMMI dengan Transformasi Box-Cox. Jurnal ILMU DASAR, Vol. 8 No. 2, Juli 2007 : 165-174
Charrad, Malika, Ghazzali Nadia, Boiteau Veroniqe, dan Laval Universite. 2014. NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set. Journal of Statistical Software. Volume 61, Issue 6