INFO ARTIKEL

Diterima : 28 Juli 2024 Direvisi : 08 Agustus 2024 Disetujui : 15 Agustus 2024

- ^{1*}Putri Nawang Asri, ²Jujuk Juhariah, ³Etty Sri Hertini, ⁴Sigit Muryanto
- ¹, Mahasiswa Program Program Studi Agroteknologi, Fakultas Pertanian dan Peternakan, Universitas Boyolali
- ²Program Studi Agroteknologi, Fakultas Pertanian dan Peternakan, Universitas Boyolali ³Program Studi Agroteknologi, Fakultas Pertanian dan Peternakan, Universitas Boyolali
- ⁴Program Studi Agroteknologi, Fakultas Pertanian dan Peternakan, Universitas Boyolali
- *putrinawangasri05052000@gmail.com

ABSTRAK

Peminat sayur bayam cukup banyak di Indonesia. Kandungan serat, protein, mineral seperti zat besi, kalsium serta vitamin C, K, dan asam folat yang terdapat dalam hijau daun baik untuk kesehatan tubuh. Sayuran mempunyai nilai jual yang relatif tinggi dan berkontribusi dalam meningkatkan perekonomian nasional sebagai sumber perolehan bagi penduduk lokal atau penanam skala kecil, menengah maupun besar. Pelaksanaan penelitian bertujuan untuk mengetahui pertumbuhan serta hasil panen tanaman bayam terhadap pemupukan menggunakan pupuk organik berwujud cair berbasis limbah ternak. Pelaksanaan berada di desa Sumbung, Kecamatan Cepogo, Kabupaten Boyolali pada tanggal 16 Maret 2024 s/d 15 April 2024. Rancangan yang digunakan yaitu rancangan acak kelompok faktorial dengan tiga faktor serta tiga ulangan. Jenis tanaman bayam sebagai faktor pertama, pupuk organik berwujud cair berbasis bambu dengan dua dosis berbeda sebagai faktor kedua dan faktor ketiga adalah pupuk organik berwujud cair berbasis limbah ternak dengan dua dosis yang berbeda. Tinggi tanaman, jumlah helaian daun, bobot segar tanaman bayam serta panjang akar tanaman merupakan variabel yang diamati. Penelitian menjelaskan bahwa pupuk organik cair berbasis limbah ternak 20ml/10 liter lebih efektif daripada pupuk organik berbasis bambu 1ml/8liter.

Kata Kunci:

Pupuk organik cair, POC berbasis bambu, POC berbasis limbah ternak, Bayam merah, Bayam hijau.

I. PENDAHULUAN

Bagian dari bidang pertanian yang semakin berkembang adalah hortikultura. Masyarakat mulai sadar akan pentingnya mengonsumsi sayuran. Kandungan serat, protein, mineral seperti zat besi, kalsium serta vitamin C, K, dan asam folat yang terdapat dalam hijau daun baik untuk kesehatan tubuh. Sayuran mempunyai nilai jual yang relatif tinggi dan berkontribusi dalam meningkatkan perekonomian nasional sebagai sumber perolehan bagi penduduk lokal atau penanam skala kecil, menengah maupun besar (Suhandoyo, 2019). Sub sektor hortikultura mengalami peningkatan yang signifikan dari tahun 2018-2020 tetapi mengalami penurunan pada tahun 2021. Sub sektor hortikultura memberikan kontribusi dalam perekonomian nasional yang besar yaitu Rp 6,15 Triliun (Kementerian Pertanian Republik Indonesia, 2022). Mayoritas masyarakat Indonesia menyukai sayur bayam. Namun tanaman bayam mengalami penurunan produktivitas pada tahun 2011, 2012 dan 2013. Tahun 2011 sebanyak 160.513 ton kemudian pada tahun 2012 menjadi 155.070 ton dan semakin turun pada tahun 2013 menjadi 140.980 ton (Bahar, 2014).

Menurut (Badan Pusat Statistik, 2020) menyatakan bahwa pada tahun 2020 terjadi penurunan produktivitas tanaman hortikultura khususnya bayam sebesar 1.444 kwintal/ha. Yang awalnya mencapai 8.059 kwintal/hektar tahun 2019 dan hanya 6.615 kwintal/hektar tahun 2020. Pupuk organik cair mampu mempertahankan bahkan meningkatkan kualitas tanah sehingga bahan berupa pupuk yang ditambahkan pada areal tanah dapat dimanfaatkan oleh tanaman dengan mudah (Nur et al., 2016).

Penambahan pupuk berbahan organik mampu memberikan pengaruh pada berat brangkasan karena menyediakan unsur hara

untuk tanaman dalam jumlah yang cukup. Pupuk organik juga meningkatkan kemampuan tanah dalam menyimpan air (Muryanto, 2020).

II. . METODE PENELITIAN

Pelaksanaan penelitian berada di Desa Sumbung, Kecamatan Cepogo, Kabupaten Boyolali pada tanggal 16 Maret 2024 – 15 April 2024. Rancangan yang digunakan yaitu Rancangan Acak Kelompok (RAK) faktorial dengan tiga faktor serta tiga ulangan. Dua jenis tanaman bayam sebagai faktor pertama, pupuk organik cair berbasis bambu dengan dua dosis berbeda sebagai faktor kedua dan faktor ketiga adalah pupuk organik cair berbasis limbah ternak dengan dengan dua dosis yang berbeda.

Faktor pertama adalah tanaman bayam dengan dua jenis:

A: Tanaman Bayam Merah

B: Tanaman Bayam Hijau

Faktor kedua adalah pupuk organik cair berbasis bambu (H) dengan kandungan hara setiap 12ml meliputi 12% NPK, 15,26% senyawa organik, unsur mikro seperti CO_2, Cu, Zn, Fe, Mn: 1230 ppm. Adapun faktor dari pupuk organik cair berbasis bambu (H) antara lain:

H0: Tanpa Pupuk Organik Cair Berbasis Bambu

H1: Pupuk Organik Cair Berbasis Bambu (1ml/8Liter)

Faktor ketiga adalah pemberian pupuk organik cari berbasis limbah ternak (N) dengan kandungan hara setiap 500cc antara lain N 0,12%, K 0,31%, P2O5 0,03%, S 0,12%, Ca 60,40 ppm, Ci

ISSN: 2723-4177

DOI:

0,29%, Mg 16,88 ppm, Mn 2.46ppm, Fe 12.89ppm, Cu <0.03ppm, Zn 4.71ppm, Na 0.15%, B 60.84ppm, Si 0.01%, Co<0.05ppm, Al 6.38ppm, NaCl 0.98%, Se 0.11ppm, As 0.11ppm, Cr<0.06ppm, Mo<0.2ppm, V<0.04ppm, SO4 0.35%, C/N ratio 0.86%, pH 7.5, Lemak 0.44%, Protein 0.71%.

Adapun faktor dari pupuk organik cari berbasis limbah ternak (N) antara lain:

NO: Tanpa Pupuk Organik Cair Berbasis Limbah Ternak

N1: Pupuk Organik Cair Berbasis Limbah Ternak (20ml/10Liter)

Dari ketiga faktor terdapat kombinasi perlakuan sebagai berikut:

AH0N0 : Tanaman Bayam Merah + Tanpa pemberian Pupuk Organik Cair Berbasis Bambu + Tanpa pemberian Pupuk Organik Cair Berbasis Limbah Ternak

AH0N1: Tanaman Bayam Merah + Tanpa pemberian Pupuk Organik Cair Berbasis Bambu + Pupuk Organik Cair Berbasis Limbah Ternak (20ml/10Liter)

AH1N0 : Tanaman Bayam Merah + Pemberian Pupuk Organik Cair Berbasis Bambu (1ml/8Liter) + Tanpa pemberian Pupuk Organik Cair Berbasis Limbah Ternak

AH1N1 : Tanaman Bayam Merah + Pemberian Pupuk Organik Cair Berbasis Bambu (1ml/8Liter) + Pupuk Organik Cair Berbasis Limbah Ternak (20ml/10Liter)

BH0N0 : Tanaman Bayam Hijau + Tanpa pemberian Pupuk Organik Cair Berbasis Bambu + Tanpa pemberian Pupuk Organik Cair Berbasis Limbah Ternak

BH0N1: Tanaman Bayam Hijau + Tanpa pemberian Pupuk Organik Cair Berbasis Bambu + Pupuk Organik Cair Berbasis Limbah Ternak (20ml/10Liter)

BH1N0 : Tanaman Bayam Hijau + Pemberian Pupuk Organik Cair Berbasis Bambu (1ml/8Liter) + Tanpa pemberian Pupuk Organik Cair Berbasis Limbah Temak

BH1N1 : Tanaman Bayam Hijau + Pemberian Pupuk Organik Cair Berbasis Bambu (1ml/8Liter) + Pupuk Organik Cair Berbasis Limbah Ternak (20ml/10Liter)

Semua perlakuan ada tiga ulangan menghasilkan 24 satuan percobaan, setiap ulangan berisi tiga polibag maka akan diperoleh 72 polibag dan setiap polibag terdapat empat tanaman sehingga populasi ada 288 tanaman. Pelaksanaan penelitian dibagi kedalam tujuh tahap. Tahap pertama adalah persiapan media tanam, terlebih dahulu dilaksanakan pembersihan areal penanaman dari gulma dan sampah kemudian memastikan bahwa pH tanah sudah netral dengan menggunakan kerts pH. Lalu mewadahkan tanah yang sudah dicampur pupuk kandang dengan perbandingan (75%: 25%), lalu polibag ukuran 35cm x 35cm diisi tanah beserta pupuk kandang sapi yang sudah tercampur rata dan selanjutnya ditata di areal lahan. Tahap kedua melakukan perendaman benih bayam merah serta bayam hijau dalam air hangat selama kurang lebih 24 jam. Persemaian dilakukan di wadah berupa tray semai berisi media tanah yang sudah dipersiapkan sebelumnya. Tahap ketiga pelabelan, sebelum dilakukan pindah tanam terlebih dahulu melaksanakan pelabelan setiap polibag. Pelabelan mempunyai tujuan mempermudah saat pemberian perlakuan untuk tanaman bayam merah maupun tanaman bayam hijau. Tahap keempat yaitu pemindahan bibit ke dalam polibag, Setelah bibit bayam merah berumur kurang lebih 2 minggu dan memiliki tinggi sekitar 10cm bibit tanaman bayam merah dan bayam hjau langsung ditanam pada polibag. Tahap kelima pemberian perlakuan, dilakukan pemupukan dengan pupuk organik berwujud cair berbasis limbah dari ternak 20ml/10Liter dan pupuk organik berwujud cair berbasis bambu 1ml/8Liter ketika bayam berusia 15, 20 dan 25 hari setelah semai dimana rata-rata setiap polibag diberi pupuk organik cair yang sudah diencerkan sebanyak 10 ml.. Tahap keenam adalah pemeliharaan meliputi penyiraman setiap pagi dan sore hari apabila musim panas, penyiangan dengan cara manual dan pengendalian hama dengan memetik daun yang terkena hama. Tahap ketujuh yaitu pemanenan ketika bayam berumur 30 hari setelah semai. Parameter pengamatan antara lain tinggi tanaman, jumlah helaian daun, bobot segar tanaman dan panjang pada akar tanaman bayam.

Pengolahan data menggunakan hitungan manual sidik ragam atau uji F taraf 5%. Dilakukan uji lanjutan Beda Nyata Jujur (BNJ) apabila beda nyata.

III. HASIL DAN PEMBAHASAN

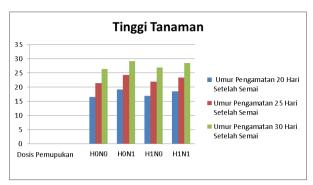
Tanaman bayam merah dan bayam hijau memberikan respon berbeda nyata terhadap pemberian pupuk organik berbasis bambu 1ml/8liter dan pupuk organik berbasis limbah ternak 20ml/10liter. Analisa data menggunakan dua tahap hitungan manual sidik ragam dilanjutkan dengan uji lanjutan Beda Nyata Jujur (BNJ). Analisa data sidik ragam bertujuan untuk mengetahui apakah pemupukan menggunakan pupuk organik berwujud cair berbasis bambu dan pupuk organik berwujud cair berbasis limbah ternak memiliki pengaruh terhadap pertumbuhan tanaman bayam. Uji BNJ untuk mengetahui perlakuan terbaik dari penambahan pupuk organik berbasis bambu dan pupuk organik berbasis limbah ternak.

a. Tinggi Tanaman

Tinggi pada tanaman bayam diamati pada hari ke-20, ke-25 dan ke-30. Terdapat beda nyata pada sumber keragaman perlakuan dan pemupukan baik pada pengamatan pertama, kedua maupun ketiga. Hasil uji BNJ dari sumber keragaman perlakuan tinggi tanaman pada hari ke-20, ke-25 dan ke-30 bisa dilihat pada tabel 1.

Tabel 1 Hasil uji BNJ dari sumber keragaman perlakuan pada tinggi tanaman bayam berusia 20 HSS, 25 HSS dan 30 HSS.

tanaman bayam berusia 20 fi.55, 25 fi.55 dan 50 fi.55.			
Perlakuan	Umur Pengamatan		
	(Hari Setelah Semai)		
-	20	25	30
Bayam merah			
AH0N0	15 a	19,9 a	24,9 a
AH0N1	17,2 b	22,3 b	27,1 b
AH1N0	15,6 a	20,7 a	25,6 a
AH1N1	17 b	21,9 b	26,9 b
Bayam hijau			
BH0N0	18 a	22,8 a	27,9 a
BH0N1	21,2 c	26,2 c	31,2 b
BH1N0	18,1 a	23,1 a	28,1 a
BH1N1	20 bc	24,8 bc	30,1 b
BNJ _{5%}	1,01	1,15	1,06


*Angka-angka yang memiliki huruf kecil yang sama menunjukkan tidak berbeda nyata menurut BNJ pada taraf 5%.

Tabel 1 memperlihatkan bahwa tinggi tanaman bayam merah pada umur 20 HSS, 25 HSS dan 30 HSS berbeda nyata dengan AH0N0 (tanaman bayam merah + tanpa pupuk organik cair berbasis bambu + tanpa pupuk organik cair berbasis limbah ternak) dan AH1N0 (tanaman bayam merah + pupuk organik cair berbasis bambu 1ml/8liter + tanpa pupuk orgnik cair berbasis limbah ternak). Rerata tinggi tanaman tertinggi diperoleh pada perlakuan AH0N1 (tanaman bayam merah + tanpa pupuk organik cair berbasis bambu + pupuk organik cair berbasis limbah ternak 20ml/10liter) berdasarkan uji BNJ 5% tidak berbeda nyata dengan perlakuan AH1N1 (tanaman bayam merah + pupuk organik cair berbasis bambu 1ml/8liter + pupuk organik cair berbasis limbah ternak 20ml/10liter) karena sama-sama diikuti huruf "b" dibelakangnya. Sedangkan untuk tanaman bayam hijau rerata tinggi tanaman tertinggi diperoleh pada perlakuan BH0N1 (tanaman bayam hijau + tanpa pupuk organik cair berbasis bambu + pupuk organik cair berbasis limbah ternak 20ml/10liter) menurut hasil uji BNJ 5% juga tidak berbeda nyata dengan perlakuan BH1N1 (tanaman bayam hijau + pupuk organik cair berbasis bambu 1ml/8liter + pupuk organik berwujud cair berbasis limbah ternak 20ml/10liter) karena diikuti huruf vang sama dibelakangnya. Unsur hara nitrogen yang terdapat pada pupuk organik cair berbasis limbah ternak 20ml/10 liter tersedia sehingga berpengaruh pada pertumbuhan tanaman bayam. Selaras dengan tanggapan (Rusmana dan Salim, 2003), menjelaskan bahwasannya nitrogen memiliki fungsi merangsang perpanjangan batang, daun serta cabang tanaman.

Tabel 2 Hasil uji BNJ dari sumber keragaman pemupukan pada tinggi tanaman bayam berusia 20 HSS, 25 HSS dan 30 HSS.

Dosis Pupuk	Umur Pengamatan (Hari Setelah Semai)		
_	20	25	30
H0N0	16,50 a	21,40 a	26,40 a
H0N1	19,20 b	24,30 c	29,20 b
H1N0	16,90 a	21,90 a	26,90 a
H1N1	18,50 b	23,40 bc	28,50 b
BNJ _{5%}	0,77	0,89	0,81

Dari hasil penelitian menjelaskan bahwa pemberian perlakuan H0N1 (tanpa pupuk organik berwujud cair berbasis bambu + pupuk organik berwujud cair berbasis limbah ternak 20ml/10liter) dan H1N1 (pupuk organik cair berbasis bambu 1ml/8liter + pupuk organik cair berbasis limbah ternak 20ml/10liter) berbeda nyata dengan H0N0 (tidak diberi pupuk organik berwujud cair berbasis bambu + tidak dipupuk dengan pupuk organik cair berbasis limbah ternak) serta H1NO (pupuk organik cair berbasis bambu 1ml/8liter + tidak diberi pupuk organik berwujud cair berbasis limbah ternak). Hal ini membuktikan bahwa pemupukan yang terlalu pekat menyebabkan pertumbuhan suatu tanaman bisa terganggu. Sesuai dengan pendapat (Ameyliska et al., 2017) bahwa pemupukan harus memperhatikan tingkat kepekatan pupuk, karena apabila suatu unsur berlebihan akan membawa hal negatif. Dalam perihal ini tinggi tanaman bayam juga berkaitan dengan proses panen tanaman bayam, semakin cepat tanaman bayam tumbuh dan berkembang maka proses panen juga semakin cepat dilaksanakan (Kendre et al., 2014).

Gambar 1 histogram tinggi tanaman dengan delapan perlakuan pada usia 20, 25 dan 30 HSS

Perlakuan HON1 (tanpa pupuk organik berwujud cair berbasis bambu + pupuk organik berwujud cair berbasis limbah ternak 20ml/10 liter) memberikan respon yang mirip dengan perlakuan H1N1 (pupuk organik cair berbasis bambu 1ml/8liter + pupuk organik cair berbasis limbah ternak 20ml/10 liter). Rata-rata paling rendah diperoleh dari perlakuan H0N0 (tanpa pupuk organik cair berbasis bambu + tidak diberi pupuk organik cair berbasis limbah ternak). Dalam hal ini tinggi tanaman bayam juga berkaitan dengan proses panen tanaman bayam, semakin cepat tanaman bayam tumbuh dan berkembang maka proses panen juga semakin cepat dilaksanakan (Kendre et al., 2014).

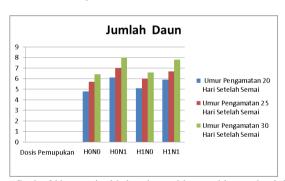
b. Jumlah Daun

Jumlah helaian daun diamati pada hari ke-20, ke-25 dan ke-30. Data hasil penelitian terlihat bahwa terdapat beda nyata dari sumber keragaman perlakuan pada hari ke-30 dan keragaman pemupukan pada hari ke-20, ke-25 dan ke-30. Hasil uji BNJ dari sumber keragaman perlakuan jumlah daun pada hari ke-30 bisa dilihat pada tabel 3.

Tabel 3. Hasil uji BNJ dari sumber keragaman perlakuan pada jumlah daun tanaman bayam berusia 30 HSS

Perlakuan	Rata-rata
Bayam merah	
AH0N0	6,4 a
AH0N1	8 b
AH1N0	6,6a
AH1N1	7,8 b
Bayam hijau	
BH0N0	6,5 a
BH0N1	8,1 b
BH1N0	6,6 a
BH1N1	7,8 b
BNJ 5%	1,06

^{*}Angka-angka yang memiliki huruf kecil yang sama menunjukkan tidak berbeda nyata menurut BNJ pada taraf 5%.


Tabel 3 memperlihatkan bahwa rerata jumlah daun tertinggi pada tanaman bayam merah berusia 30 HSS pada perlakuan AH0N1 (tanaman bayam merah + tanpa pupuk organik cair berbasis bambu + pupuk oganik cair berbasis limbah ternak 20ml/10 liter) berbeda nyata dengan AH0N0 (tanaman bayam merah + tanpa pupuk organik cair berbasis bambu + tanpa pupuk organik cair berbasis limbah ternak) dan AH1N0 (tanaman bayam merah + pupuk organik cair berbasis bambu 1ml/8liter + tanpa pupuk orgnik cair berbasis limbah ternak) karena tidak diikuti huruf kecil yang sama dibelakangnya. Sedangkan rerata jumlah daun tertinggi tanaman bayam hijau pada usia 30 HSS diperoleh dari perlakuan BH0N1 (tanaman bayam hijau + tanpa pupuk organik cair berbasis bambu + pupuk organik cair berbasis limbah

ternak 20ml/10liter) berdasarkan uji BNJ 5% tidak berbeda nyata dengan perlakuan BH1N1 (tanaman bayam hijau + pupuk organik cair berbasis bambu 1ml/8liter + pupuk organik cair berbasis limbah ternak 20ml/10liter) karena dibelakangnya sama-sama diikuti huruf "b".

Tabel 4 Hasil uji BNJ dari sumber keragaman pemupukan pada jumlah daun bayam bensia 20 HSS 25 HSS dan 30 HSS

Dosis Pupuk	Umur Pengamatan (Hari Setelah Semai)		
_	20	25	30
H0N0	4,8 a	5,7 a	6,4 a
H0N1	6,1 b	7,0 c	8,0 b
H1N0	5,1 a	6,0 ab	6,6 a
H1N1	5,9 b	6,7 bc	7,8 b
BNJ	0,85	0,92	0,81

Rata-rata tertinggi diperoleh dari perlakuan H0N1 yaitu tidak diberi pupuk organik cair berbasis bambu + pupuk organik cair berbasis limbah ternak 20ml/10 liter dengan perlakuan H1N1 yang sama-sama diberi pupuk organik berwujud cair berbasis limbah ternak menunjukkan hasil yang tidak ada beda nyata berdasarkan uji BNJ 5% dikarenakan sama-sama diikuti huruf "b" setelahnya. Sehingga bisa dikatakan bahwa perlakuan yang lebih efektif adalah perlakuan H0N1 yaitu tidak diberi pupuk organik cair berbasis bambu + dilakukan pemberian pupuk organik cair berbasis limbah ternak 20ml/10 liter karena dengan pemberian satu jenis pupuk bisa menunjukkan hasil jumlah daun yang tidak berbeda nyata dengan penggunaan dua jenis pupuk. Unsur hara N dalam jumlah cukup yang terkandung di dalam pupuk organik berwujud cair berbasis limbah ternak berperan untuk pembentukan helaian daun. Hal yang paling utama dari pembentukan helaian daun adalah pada ketersediaan unsur nitrogen. Unsur nitrogen dalam jumlah kurang menyebabkan tanaman kesulitan untuk membentuk daun baru karena rangsangannya kurang. Jumlah daun menjadi indikator tentang besarnya energi fotosintesis yang dihasilkan oleh tanaman dan berkaitan erat dengan produktivitas suatu tanaman (Rahmawati dan Widyasunu, 2013).

Gambar 2 histogram jumlah daun dengan delapan perlakuan pada usia 20, 25 dan 30 HSS

Hasil jumlah helaian daun terbaik didapatkan dari pemberian perlakuan HON1 (tidak diberi pupuk organik cair berbasis bambu + pupuk organik berwujud cair berbasis limbah ternak 1ml/8liter). Jumlah daun sangat penting jika dijadikan sebagai sayuran, karena daun adalah bagian utama yang dikonsumsi oleh masyarakat (Segheloo et al., 2014).

c. Bobot Segar Tanaman

Bobot segar tanaman diamati ketika panen. Data hasil penelitian menunjukkan bahwa terdapat beda nyata pada sumber keragaman perlakuan dan pemupukan. Hasil uji BNJ dari sumber

keragaman perlakuan bobot segar tanaman ketika panen bisa dilihat pada tabel 5.

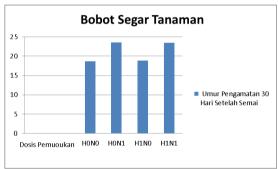
Tabel 5. Hasil uji BNJ dari sumber keragaman perlakuan pada bobot segar tanaman

bayam berusi: Perlakuan	Umur
	Pengamatan
	(Hari Setelah
	Semai)
	30
Bayam merah	
AH0N0	16,3 a
AH0N1	19,9 b
AH1N0	16,4 a
AH1N1	19,7 b
Bayam hijau	
BH0N0	21,2 a
BH0N1	27,3 b
BH1N0	21,4 a
BH1N1	27,2 b
BNJ 5%	1,79

^{*}Angka-angka yang memiliki huruf kecil yang sama menunjukkan tidak berbeda nyata menurut BNJ pada taraf 5%.

Rerata bobot segar tanaman berusia 30 HSS berbeda nyata dengan perlakuan AH0N0 (tanaman bayam merah + tanpa pupuk organik berwujud cair berbasis bambu + tanpa diberi pupuk organik berwujud cair berbasis limbah ternak) serta AH1N0 (tanaman bayam merah + dipupuk dengan pupuk organik berwujud cair berbasis bambu 1ml/8liter + tanpa pupuk organik cair berbasis limbah ternak). Rerata bobot segar tanaman terbaik diperoleh pada perlakuan AHON1 (tanaman bayam merah + tanpa pupuk organik cair berbasis bambu + pupuk organik cair berbasis limbah ternak 20ml/10liter) berdasarkan uji BNJ 5% tidak ada beda nyata dibandingkan dengan perlakuan AH1N1 (tanaman bayam merah + pupuk organik berwujud cair berbasis bambu 1ml/8liter + pupuk organik cair berbasis limbah ternak 20ml/10liter) karena sama-sama diikuti huruf "b" dibelakangnya. Sedangkan rerata bobot segar tertinggi tanaman bayam hijau diperoleh dari perlakuan BH0N1 (tanaman bayam hijau + tanpa pupuk organik cair berbasis bambu + pupuk organik cair berbasis limbah ternak 20ml/10liter) berdasarkan uji BNJ 5% tidak berbeda nyata dengan perlakuan BH1N1 (tanaman bayam hijau + pupuk organik cair berbasis bambu 1ml/8liter + pupuk organik cair berbasis limbah ternak 20ml/10liter) karena sama-sama diikuti huruf "b".

Tabel 6 Rata-rata hasil pengamatan bobot segar tanaman bayam pada hari ke-30 setelah proses panen


Dosis Pupuk	Hasil Pengamatan 30 HSS (Hari Setelah Semai)
H0N0	18,70 a
H0N1	23,60 b
H1N0	18,90 a
H1N1	23,50 b
BNJ	1,37

^{*}Angka-angka yang memiliki huruf kecil yang sama menunjukkan tidak berbeda nyata menurut BNJ pada taraf 5%.

Rerata bobot segar tanaman bayam terbaik berasal dari perlakuan H0N1 (tidak diberi pupuk organik berbasis bambu + pupuk organik cair berbasis limbah ternak 20ml/ 10 liter), jika

ISSN: 2723-4177

dibandingkan dengan perlakuan H1N1 (pupuk organik berbasis bambu 1ml/8liter + pemberian pupuk organik cair berbasis limbah ternak 20ml/ 10 liter) karena sama-sama diikuti huruf "b" berdasarkan uji lanjutan BNJ 5% sehingga tidak berbeda. Rata-rata bobot segar tanaman bayam terendah berasal dari perlakuan tanpa pupuk sama sekali dan perlakuan hanya dengan pemberian pupuk organik cair berbasis bambu. Jenis tanaman bayam yang menunjukkan bobot segar tanaman bayam dengan rata-rata tertinggi didapatkan pada tanaman bayam hijau. Hal ini tentu saja memiliki korelasi dengan beberapa parameter yang lainnya yaitu tinggi suatu tanaman serta jumlah helaian daun. Artinya semakin tinggi bobot segar suatu tanaman juga diikuti dengan peningkatan parameter lainnya. Hal ini juga didapatkan dari pengamatan tinggi tanaman, rata-rata tinggi tanaman tertinggi juga didapatkan dari perlakuan H0N1 (tidak diberi pupuk organik cair berbasis bambu + pupuk organik cair berbasis limbah ternak 20ml/10liter). Sesuai dengan pernyataan (Prasetya et al., 2019) bahwa tinggi tanaman, jumlah helaian daun dan lebar helaian daun mempengaruhi hasil akhir bobot segar suatu tanaman.

Gambar 3 histogram rata-rata bobot segar pada tanaman bayam berumur 30 hari setelah semai.

Bobot segar tanaman tertinggi dihasilkan dari jenis bayam hijau dan berasal dari perlakuan H0N1 (tanpa pemberian pupuk organik berwujud cair berbasis bambu + pupuk organik berwujud cair berbasis limbah ternak 20ml/10 liter). Sama halnya dengan pengamatan tinggi tanaman juga didapatkan rata-rata tanaman tertinggi berasal dari jenis bayam hijau yang dipupuk dengan pupuk organik berwujud cair berbasis limbah ternak dengan dosis 20ml/10 liter. Bobot segar suatu tanaman sangat erat kaitannya dengan panjang batang, keduannya berkaitan erat dan memiliki pengaruh positif (Hasan et al., 2013).

d. Panjang Akar

Panjang akar diamati ketika panen. Terdapat beda nyata pada sumber keragaman perlakuan dan pemupukan dari hasil penelitian. Hasil uji BNJ dari sumber keragaman perlakuan panjang akar tanaman ketika panen bisa terlihat pada tabel 7.

Rerata panjang akar terpanjang berasal dari perlakuan H0N1 (tidak diberi pupuk organik cair berbasis bambu + diberi pupuk organik cair berbasis limbah ternak 20ml/10 liter) tidak ada beda nyata dengan perlakuan H1N1 (pupuk organik berwujud cair berbasis bambu 1ml/8liter + diberi pupuk organik cair berbasis limbah ternak 20ml/10 liter) karena sama-sama diikuti huruf "b". Perlakuan yang tidak diberi pupuk organik cair berbasis limbah ternak memperoleh rata-rata panjang akar terendah antara lain perlakuan H1N0 dan H0N0. Serapan hara serta air dari tanah berhubungan dengan panjang akar suatu tanaman. Unsur hara nitrogen mempengaruhi pertumbuhan akar suatu tanaman. Menurut (Wijayanto dan Iftitah, 2013) banyaknya unsur hara serta air yang disediakan didalam tanah tergantung kemampuan untuk

mendapatkan unsur hara serta air tersebut. (Suryanto et al., 2005) juga menjelaskan bahwa semakin panjang akar maka semakin panjang tajuk tanaman.

Tabel 7 Hasil uji BNJ dari sumber keragaman perlakuan pada panjang akar

tanaman bayam berusia 30 HSS.	
Perlakuan	Umur
	Pengamatan
	(HariSetelah
	Semai)
-	30
Bayam merah	
AH0N0	9,3 a
AH0N1	10,9 b
AH1N0	9,5 a
AH1N1	10,7 b
Bayam hijau	
BH0N0	13 a
BH0N1	14,4 b
BH1N0	13,3 a
BH1N1	13,5 ab
BNJ 5%	0,72

^{*}Angka-angka yang memiliki huruf kecil yang sama menunjukkan tidak ada beda nyata berdasarkan BNJ pada taraf 5%.

Rerata panjang akar tanaman bayam merah dan bayam hijau pada umur 30 HSS berbeda nyata dengan perlakuan H0N0 (tanpa pupuk organik cair berbasis bambu + tanpa pupuk organik cair berbasis limbah ternak) dan H1N0 (pupuk organik cair berbasis bambu 1ml/8liter + tanpa pupuk orgnik cair berbasis limbah ternak). Rerata panjang akar tertinggi didapatkan dari perlakuan H0N1 (tidak diberi pupuk organik cair berbasis bambu + pupuk organik cair berbasis limbah ternak 20ml/10liter) berdasarkan uji BNJ 5% tidak berbeda nyata dengan perlakuan H1N1 (pupuk organik cair berbasis bambu 1ml/8liter + pupuk organik cair berbasis limbah ternak 20ml/10liter) karena sama-sama diikuti huruf "b" dibelakangnya.

Tabel 8 Rata-rata hasil pengamatan panjang akar tanaman bayam hari ke-30 setelah proses panen.

proses parien.	
Dosis Pupuk	Hasil Pengamatan 30 HSS (Hari Setelah Semai)
H0N0	11,20 a
H0N1	12,70 b
H1N0	11,40 a
H1N1	12,10 b
BNJ5%	0,56

^{*}Angka-angka yang memiliki huruf kecil yang sama menunjukkan tidak berbeda nyata menurut BNJ pada taraf 5%.

Gambar 4 histogram rerata panjang akar pada tanaman bayam berumur 30 hari setelah panen.

ISSN: 2723-4177

Rata-rata panjang akar tertinggi didapatkan dari tanaman bayam hijau dan pada perlakuan HON1 (tanpa pupuk organik cair berbasis bambu + pupuk organik cair berbasis limbah ternak 20ml/10liter). Hal tersebut bisa terjadi diduga karena kandungan unsur hara N yang tersedia serta cukup untuk pembentukan dan perpanjangan akar pada tanaman (Yama dan Hendro, 2019). Panjang akar dan jumlah rambut akar memiliki hubungan yang positif dengan bobot segar tanaman karena serapan air dan unsur hara mengalami peningkatan (Agus, 2015).

IV. KESIMPULAN

Dari pengkajian yang telah dilaksanakan, maka bisa diambil kesimpulan sebagai berikut:

- 1. Berdasarkan hasil uji lanjutan Beda Nyata Jujur (BNJ) sumber keragaman perlakuan serta pemupukan menunjukkan berbeda nyata pada jenis pupuk.
- 2. Jenis tanaman bayam hijau mempunyai produktivitas yang lebih tinggi dari tanaman bayam merah.
- Pupuk organik cair limbah ternak 20ml/10 liter lebih efektif dibandingkan dengan pupuk organik cair berbasis bambu 1ml/8liter baik dari tinggi tanaman, jumlah helaian daun, panjang akar dan bobot segar tanaman bayam merah maupun bayam hijau.

DAFTAR RUJUKAN

- Agus, A. (2015). Kajian Asosiasi Rhizobacteri indigenous Merapi —Mikoriza dan Frekuensi Penyiraman terhadap Pertumbuhan dan Hasil Padi Segreng di Tanah Regosol. Skripsi Fakultas Pertanian UMY.
- Ameyliska, N., Dukat., & Achmad, F. (2017). Pengaruh kombinasi konsentrasi pupuk organik cair (super farm) dan kultivar terhadap pertumbuhan dan hasil panen pakcoy (Brassica rapa L.). *Jurnal Agrijati*, 31(2).
- Badan Pusat Statistik. (n.d.-a). Diambil 10 Oktober 2023, dari https://boyolalikab.bps.go.id/indicator/55/418/1/sayuran-semusim-luas-panen-dan-produksi-bayam-di-kabupaten-boyolali.html
- Bahar, Y. (2014). Statistik Produksi Hortikultura Tahun 2013. Kementrian Pertanian Direktorat Jendral Hortikultura.
- Hasan, M., Akther, C.A., & Raihan, M. S. (2013). Genetic variability, correlation and path analysis in stem Amaranth (Amaranthus tricolor L.) genotypes. *The Agriculturists*, 11 (1), 1-7.
- Herdian, D. (2013). Pengaruh Konsentrasi POC Berbasis Limbah Ternak Dan Varietas Terhadap Pertumbuhan Dan Produksi Tanaman Tomat. (Skripsi, Univerisitas Teuku Umar Meulaboh).
- Kendre, V.H., Dod, V.N., Nagre, P.K., Potdukhe, N.R., & Kale, V.S. (2014). Genetic variability and correlation studies in leafy amaranth. PKV Res. J., 38 (1), 14-17.
- Muryanto, S., & Margaretha, P.A. (2020). Pengaruh Jenis Hara Mikro pada Fermentasi Urin Sapi Sebagai Nutrisi Hidroponik pada Budidaya Selada Merah (Lactuca Sativa Var Red Rapids). *Agrotech Research Journal*, 1(2).
- Nur, R., A.R. Noor & M. Elma. (2016). Pembuatan Pupuk Organik Cair dari Sampah Organik Rumah Tangga dengan Penambahan Bioaktivator EM4 (Effective Mircroorganisms). *Konversi*, 5(2).

- Obat Pertanian Pupuk Cair Lengkap Berbasis Bambu 12 ml Berkah Tani. (n.d.). Diambil 16 Juni 2023, dari https://berkahtani.id/products/pupuk-cair-lengkap-bambu-ijo-12-ml
- Prasetya, B., S. Kurniawan., & M. Febrianingsih. (2019). (Brassica Juncea . L.) pada entisol J. *Jurnal Agritek*. 17(5): 1022-1029.
- Rahmawati, E., & Widyasunu, P. (2013). Pengaruh bokashi berbasis azolla microphylla dan lemna polibagrhiza terhadap serapan dan produksi tanaman pakchoy (Brassica chinensis L.), serta porositas inseptisols. *Jurnal Penelitian Pertanian*. Universitas Jendral Soedirman.
- Rusmana, N., & A.A. Salim. (2003). Pengaruh kombinasi pupuk daun puder dan takaran pupuk N, P, dan K yang berbeda terhadap hasil pucuk tanaman teh (Camelia sinensis (L). O. Kuntze) seedling, TRI 2025 dan GMB 4. *Jurnal Penelitian Teh dan Kina* (1-2)28-39.
- Segheloo, A.E., Gharbeh, H.A., Mohebodini, M., Janmohammadi M., Nouraeni, M., & Sabaghnia, N., (2014). The use of some morphological traits for the assessment of genetic diversity in spinach (Spinacia oleracea L) landrace. Plant Breeding and Seed Science, 46, 46-57.
- Suhandoyo. (2019). Penanganan Pascapanen Sayuran Di Kelurahan Maharatu Kecamatan Marpoyan Damai Kota Pekanbaru. *Skripsi*, 1–96.
- Suryanto, P., Tohari., & Sabarnurdin, M.S. (2005). Dinamika Sistem Berbagi Sumberdaya (Resourses Sharing) dalam Agroforestri: Dasar Pertimbangan Penyusunan Strategi Silvikultur. *Jurnal ilmu pertanian* XII (2): 165-178.
- Wijayanto, N., & Iftitah, R. (2013). Panjang dan kedalaman akar lateral jabon (Anthocephalus cadamba (Roxb.) Miq.) di Desa Cibening, Kecamatan Pamijahan Kabupaten Bogor, Jawa Barat. *Jurnal Silvikultur Tropika*, vol. 04 No.01, 23-29.
- Yama, D., & Hendro, K. (2019). Pertumbuhan dan kandangan klorofil pakcoy (Brassica rappa. L) pada beberapa konsentrasi AB MIX dengan sistem wick. *Jurnal Teknologi*. Vol. 12 No.1.

ISSN: 2723-4177

DOI: